SAMEM user interface

The SAMEM system consists of two main pipelines (gene evolution analysis and protein evolution analysis), and two supplementary pipelines (sample making and coding-sequences testing) (Fig. 1). The common feature of both main pipelines is the possibility of user-guided combination of various methods of common stages of evolutionary analysis such as multiple sequence alignment making, phylogenetic tree construction and ancestral sequences reconstruction.

Fig. 1. The SAMEM web-page.

The SAMEM user interface is based on unified structure. The interactive graphical scheme of the pipeline is given on the right side of the screen, as shown in Fig. 2. Additionally, a quick guide explaining how to work with the pipeline is located to the right of the scheme. It includes a description of the input files and parameter settings. This information displayed dynamically depending on the user choice of the pipeline topology.

Fig. 2. The interactive graphic scheme of SAMEM pipelines and corresponding quick guide information on the right side displayed in green font. A) Pipeline for analysis of protein-coding genes evolution; B) Pipeline for analysis of protein evolution; C) Supplementary pipeline for sample preparation and BLOSUM matrix generation; D) Supplementary pipeline for checking of protein-coding sequences.

By clicking the name of the program in the graphic scheme of pipeline the user enters its parameter setup panel. User can choose the algorithm of the computational module, change its parameters and specify additional input data if needed. The user can also set their own parameters and intermediate files by clicking on the "Show / Hide input files" link on the node parameter setup panel. (Fig. 3).

Fig. 3. Examples of the computational module setup panels: setting of parameters by clicking on "Show / Hide input files" link.

The user can set up the start and the stop calculation nodes of pipeline. The start and the stop calculation nodes can be selected by the drop-down menu located at the top of the screen (Fig. 4), or by scrolling through all the calculation nodes of pipeline and changing of start and stop control points (at the left side of the screen).

Firefox					
Pipeline	e system +				
(+)	😼 🔲 pixie.bionet.nsc.nu/cgi-bin/pipeline/index.pl?nodes_file=/apache/www/cgidata/xmldata/samem/nodes_nuc.xml&programs_file=/a	apacl 🏠 🔻 🤁 🚼 🕶 Google	٩		• 🖗 •
Star	t: Codons to Amino acids Translation node Stop: Kr/Kc estimation node	•	Pipeline scheme		Ē
	Rename node	SAMEM startpage	Please input FASTA-for renamed (see Rename protein-coding nucleot sequences into the Co	matted and node) ide idons to	t
1	RenameSeq - Rename sequence names in FASTA file and save original names into separate file	Transeq	Amino actos translatio Optionally you need to BLOSUM matrix (see supplementary pipelin estimation node.	enter e) into Kr/K	c
	Show/Hide input files Rename Direct or reverse rename	Mafft	Please check carefully parameters. Pay your the formatting of exan files.	other input attention to ple input	5
		Modelestimator			
	Codons to Amino acids Translation node	↓			
	Transeq - Translate nucleic acid sequences into proteins (Rice et al., 2000)	Tranalign			
	Show/Hide input files	FastTree_n			-

Fig. 4. Setting the start and the stop calculation nodes of pipeline.

The parameter setup panel for each calculation node contains the input fields for input files and the fields for input parameters as shown in Fig. 5. For some calculation nodes the user can change computational algorithm. The choice of the algorithm can be set by the internal control points as shown in Fig. 6.

Fig. 5. Examples of the computational module setup panels: setting up parameters using text-boxes and drop-down menus.

Pipeline system Pipeline system pixie.bionet.nsc.ru/cgi-bin/pipeline/index.pl?nodes_file=/apache/www/cgi	data/xmldata/samem/nodes_prot.xml&programs_file: 🏫 + 😋 🚼 + Google 🖉 🖉			
Alignment node Alignment node Mafft - Accurate multiple sequence alignment algorithm based on fast Fourier transform (Katch and Toh. 2008) with BLOSUM (Henikoff, Henikoff, 1992) or PAM (Dayhoff et al., 1978) or transmembrane PAM (Lones et al., 1994) matrices Show/ride input files Alignment strategy Fastest - progressive method with a rough guide tree; Local - Iterative refinement information; Global - Iterative refinement method incorporating global pairwise alignment information; Biggaps - Iterative refinement method incorporating local pairwise alignment information; Biggaps - Iterative refinement method incorporating local pairwise alignment information; Biggaps - Iterative refinement method incorporating local pairwise alignment information; Biggaps - Iterative refinement method incorporating local pairwise alignment information; Biggaps - Iterative refinement method incorporating local pairwise alignment information; Biggaps - Iterative refinement method incorporating local pairwise alignment information; Biggaps - Iterative refinement method incorporating local pairwise alignment information; Biggaps - Iterative refinement method incorporating local pairwise alignment information; Biggaps - Iterative refinement method incorporating local pairwise alignment information; Biggaps - Iterative refinement method incorporating local pairwise alignment information; Biggaps - Iterative refinement method incorporating local pairwise alignment information; Biggaps - Iterative refinement method incorporating local pairwise alignment information; Biggaps - Iterative refinement method incorporating local pairwise alignment information; BLOSUM matrix BLOSUM matrix BLOSUM matrix BLOSUM matrix Wuthenber approximate, string-matching algorithm designed to fast alignment of large numbers of protein sequences (Lassman and Sonnhammer, 2005) Wuth				
Input Protein sequences in FASTA format	Load a local file with data Browse_ Alternatively, paste here >51-N MQKRIALSEPEEVLEHVESEIQLDKDRNSVSLVCKSWYEIERWCRRKVEIGNC			
Gap open penalty Gap open penalty Gap extension penalty Gap extension penalty Terminal gap penalties Terminal gap penalties A constant added to the substitution matrix A constant added to the substitution matrix Methods Wu and Manber or Dynamic programming	11.0 0.85 0.45 0.0 WU •			

Fig. 6. Changing the computational algorithm into the calculation node (compare with Fig. 5).

Running the pipeline generates a unique task number (Fig. 7) and the corresponding web-page with the information about the progress of task (Fig. 8). This page shows the input and output data and the task execution status (Started, Ended, Failed) for each node of the pipeline.

Fig. 7. Unique task number.

Firefox 🔻				x	
Pipeline system	+			-	
(C) pixie.bionet.ns	← → pixie.bionet.nsc.ru/cgi-bin ☆ マ C S + Google				
View cmd line	/iew cmd line				
	Input files				
	rename.multifasta [View] [Visu	alization]		- 14	
	Output mes			. 18	
	rename.multifasta.pep [View] [Visualization				
	renameseq.stderr [View]				
Mafft	Input options				
Ended					
	Alignment strategy	fastest			
View cmd line	Select matrix	BLOSUM			
	BLOSUM matrix	62		E	
	PAM matrix	250			
	Transmembrane PAM matrix	250			
	Input files				
	rename.multifasta.pep [View]				
	Output files				
	alignment [View] [Visualization]	l		- 11	
	mafft.stderr [View]			- 18	
Modelestimator	Input options				
Luded	Calculation precision	0.0001		- 11	
<u>View cmd line</u>	Input files				
	alignment [View]				
	Output files model [View]				
Tranalign	Input options			-	

Fig. 8. Web-page with the information about the task execution status.

The web-page containing the information about task execution status is linked with the JalviewLite graphical visualizer of multiple sequence alignment (Fig. 9), the Archaeopteryx graphical visualizer of phylogenetic trees (Fig. 10) and the R (heatmap function) graphical visualizer of numerical tables (Fig. 11).

Fig. 9. Visualization of multiple sequence alignment by JalviewLite. It is important to note that the easy-to-use species names were shown. To convert these species names to native ones the first node of the main pipelines must be used.

Fig. 10. Visualization of phylogenetic tree by Archaeopteryx. It is also important to note that the easy-to-use species names were shown. To convert these species names to native ones the first node of the main pipelines must be used.

Fig. 11. Heatmap (R) graphical visualizer of numerical tables.

In addition to the visual data representation SAMEM provides a text representation of data (Fig. 12). These text files, information is presented in a simple table form (can be easily exported to MS Excel), in which the rows and the columns represents different data types. For example, the data showed on the Fig. 12 represents species in rows and the physicochemical property changes (from the common ancestor of the analyzed species) in the columns.

Fields	🔶 🗉 💶 💌 🗙
Pipeline system A http://pixe.bione_t&mime=text/plain × +	and the second sec
🔄 🔊 🗋 pisie.bionet.nsc.cu/cgi-bin/pipeline/get_file.pl?id=xNw/OgKHUn&name=Kr.mat&mime=text/plain	۹ 💁
Hydrostatic pressure asymmetry index, PAI Di Giulio, 2005 AA composition of CYT of single-spanning proteins Nakashima-Nishikawa, 1992 Composition of am	ino acids in nuclear proteins p
Arabidopsis_lyrata_scaffold_503580.1_EnsemblPlants 0.08879 0.07694 0.08536 0.04586 0.08105 0.05121 0.08006 0.07871 0.04175 0.07369 0.07556 0.07788 0.07353 0.0703 0	.07369 0.08539 0.06933 0.0886
KEGG_RCOM_0556140_Ricinus_communis_TIR1 0.05196 0.05095 0.0489 0.03248 0.04785 0.0479 0.05093 0.04477 0.03141 0.04585 0.03847 0.04275 0.03658 0.03762 0.04585 0.04792 0	.04167 0.03861 0.04483 0.04153
b_ACU81102.1_TIR1_Solanum_lycopersicum 0.0954 0.09753 0.09212 0.04377 0.09112 0.05316 0.08874 0.07333 0.03863 0.0868 0.06778 0.0764 0.07624 0.06771 0.0868 0.09108 0	.07727 0.0871 0.08247 0.07002
gb_ACT53268.1_TIR1_Nicotiana_tabacum 0.0851 0.08721 0.07667 0.04783 0.07979 0.04406 0.07429 0.0805 0.04269 0.07959 0.06064 0.07844 0.07419 0.06567 0.07959 0.08489 0	.07112 0.08095 0.07526 0.06593
gb_ACX31301.2_TIR1_Dimocarpus_longan 0.05048 0.0569 0.06005 0.03051 0.05468 0.01311 0.05898 0.04522 0.02947 0.04111 0.04406 0.04422 0.03584 0.03166 0.04111 0.05167 0	.04201 0.04734 0.03571 0.03885
gb ABG46343.1 TIR1 Gossypium hirsutum 0.06599 0.06624 0.06719 0.03757 0.06833 0.04489 0.06181 0.06684 0.03344 0.06611 0.06058 0.06928 0.06282 0.05957 0.06611 0.07348 0	.05759 0.06915 0.06373 0.05344
KEGG_AT3G62980_Arabidopsis_thaliana_TIR1 0.09281 0.08096 0.08436 0.04586 0.08206 0.05121 0.08207 0.08272 0.04175 0.07871 0.07757 0.08391 0.07956 0.07632 0.07871 0	.09142 0.07234 0.09565 0.08806
KEGG_100233127_Vitis_vinifera_TIR1 0.06899 0.06354 0.0768 0.04105 0.07569 0.04216 0.07338 0.0668 0.03689 0.07228 0.05497 0.0668 0.06245 0.06028 0.07228 0.07669 0	.06899 0.06471 0.06462 0.05712
KEGG POPTR 572746 Populus trichocarpa FBL1 0.07109 0.06365 0.06373 0.04291 0.06695 0.04477 0.05831 0.06061 0.04181 0.06277 0.06368 0.06502 0.06408 0.06301 0.06277 0	.0692 0.0511 0.06615 0.05964
	•

Fig. 12. Text data representation.

In addition to pipeline data processing, SAMEM has the ability to analyze data by single computational node / program. The user can easily transform the pipeline to the set of individual programs by clicking on the name of the program in the pipeline, as shown in Fig. 13. Note, that when you doing so, the pipeline programs are grouped on the basis of their function (Fig. 13). This SAMEM feature greatly simplifies the task to reanalyzing data using separate pipeline computational nodes or programs.

17	pixie.bionet. nsc.ru /cgi-bin/pipeline/index.pl?nodes_file=/apache/www/cgidata	/xmldata/samem/nodes_nuc.xml&programs_file=/apa 🏫 🔻 😋 🚼 🛪 Google	•••	r.
	Empirical (Schneider et al., 2005).			
	Show/Hide input files			
8	Number of gamma rate categories			
7	Specify the number of gamma rate categories Aloba fixation			
	Alpha is fixed			
	Alpha parameter	0		
	(initial or fixed)	.0		
	Optimize branch			
	Optimize branch lengths on starting tree			
	Codon evolution model (M5 or Empirical model)	15 -		
	Codeml - Codeml (Yang, 2007) ancestor	reconstruction under		
	various modification of M8 (Yang et al.,	2000) codon evolution model,		
	Marginal reconstruction method (Kosh	i and Goldstein, 1996)		
	Show/Hido input filos			
	Genetic code			
	0 for the universal code, 1 for the mammalian			
	invertebrate mt. 5 for ciliate nuclear code. 6	0 -		
	for echinoderm mt, 7 for euplotid mt, 8 for			
	alternative yeast nuclear, 9 for ascidian			
	Number of categories			
	 Number of categories for beta and w codon 	10		
	Kapna (Ts/Ty) fixation			
	Kappa is fixed			
	Kappa (Ts/Tv) parameter	0.5		
	Omega (Ka/Ks) fixation			
	Omega is fixed			
	Omega (Ka/Ks) parameter	1.0		
	Codon frequencies in codon substitution model			
	Equal (0), Calculated from the average nucleotide			
	frequencies (1), From the average nucleotide	2 -		

Firefox *			÷ = -	- x	
Pipeline system	+ - A ATM AND C A ATM AND C	and a second second second	and the second sec	-	
pixie.bionet.nsc.ru/cgi-bin/pip	eline/programs.pl?nodes_file_orig=/apache/www/cgidata/xmldata/samem/no	odes_prot.xml&programs_ 🏫 🔻 🥙 🛃 🛪 Google	r 🛛 🖉 1		
Amino acid substitution model <u>Modelestimator</u>	Codemi - Codemi (<u>Yang. 2007</u>) ancest user defined substitution mode Soldstein, 1996) Amiro add substitution models: IO atal., 2001), Dayhoff (Dayhoff et al., 1978), DONut (and Hasegaria, 1996), MiMani (Gao et al., 19	tor reconstruction under el, Marginal reconstruc (Le and Gascuel, 2008), WAG (Whel Kosiol and Goldman, 2005), CPREV (, 98), MtAt (Abascal et al., 2007), MtZ	er various general ar tion method (<u>Koshi and</u> an and Goldman, 2001), JTT (Jon Adachi et al., 2000), MREV (Adac og (<u>Rota-Stabelli al., 2009</u>).	nd es al	
Ancestral reconstruction Ancescon CodemI FastmI	Input Protein gapless sequence alignment in FASTA format	Load a local file with data Browse. Alternatively, paste here Load a local file with data	Example		
Correlation analysis <u>Stattests</u>	Input Unrooted tree in Newick format	Alternatively, paste here	Example	H	
Format conversion GapsDel PonamoSog	Input Amino acid substitution model (PAML format)	Alternatively, paste here	Example		
Kenameseq	Analysis type On the basis of general model or on the basis o user defined model	f general 👻			
Molecular clock	Number of gamma rate categories Specify the number of gamma rate categories	8			
analysis	Alpha fixation				
<u>r8s</u>	Alpha is fixed				
	Alpha parameter of the gamma distribution	1.0			
Multiple alignment	Model type	empirical -			
<u>Kalign</u> <u>Mafft</u>	Models General Amino acid substitution models	LG			
Run Codemi program					

Fig. 13. Analyzing data by single programs.